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Mathematical reasoning is a key proficiency in mathematics, however primary school 
teachers may have trouble noticing students’ mathematical reasoning mid-lesson. In this 
study, students’ mathematical reasoning has been analysed using video data collected as one 
grade of Year 5 and 6 students worked through the ‘Painted Cube’ task. Analysis reveals that 
students displayed a range of sophistication of mathematical reasoning. An ecological 
analysis of what student reasoning actions were visible to the teacher mid-lesson suggests 
that many of these actions were too subtle to be picked up by the teacher. Introduction 

While mathematical reasoning is a key proficiency in the Australian Curriculum, 
research has shown that many Australian primary school teachers need support in enacting 
and assessing mathematical reasoning (Bragg, Herbert, Vale, Loong, & Widjaja, 2016; 
Loong, Vale, Bragg, & Herbert, 2013). Loong et al. (2017) reported that primary school 
teachers struggled to define, recognise and implement reasoning. Hiebert et al. (2015) stated, 
“it takes time for teachers to become aware of the nuances of mathematical reasoning and 
be able to express their understanding of it” (p. 35). This calls to attention the need to develop 
teachers’ capacity to teach and assess this vital mathematical proficiency. Ellis, Özgür, and 
Reiten (2018) underscore the important role of a teacher in supporting student mathematical 
reasoning. They framed teacher pedagogical moves into four categories: eliciting, 
responding, facilitating and extending.  

What teachers notice mid-lesson has been argued to affect teachers’ pedagogical 
decisions as they teach (Jacobs, Lamb, Philipp, & Schappelle, 2011). Hence, if teachers are 
to teach and assess mathematical reasoning, they should be able to notice students’ reasoning 
mid-lesson. This study seeks to investigate the degree to which a class of Year 5 and 6 
students’ mathematical reasoning was noticeable to the teacher as the students worked 
through a problem-solving task called the ‘Painted Cube’ (Driscoll, 1999). In analysing 
students’ reasoning in this task, an ecological account of teacher noticing (Jazby, 2016) will 
be applied to data relating to teacher actions mid-lesson.  

Theoretical Framework 

Mathematical Reasoning in Primary School Classrooms 
Earlier studies have highlighted the importance of making mathematical reasoning 

age-appropriate (Komatsu, 2010; Reid, 2002; Stacey, 2010; Stylianides, 2007). In primary 
schools, this often involves the use of concrete manipulatives, diagrams or other visual 
representations including gestures. This approach is often referred to as ‘pre-formal proof’ 
(Blum & Kirsch, 1991) or ‘action proofs’ (Stylianides, 2007).  

Research underscores the need to unpack subtle differences in the way in which 
students reason mathematically and communicate their mathematical reasoning. However, 
there is still a lack of research addressing what counts as valid generalisation and 
justification, and what forms of reasoning and representations are within the conceptual 
reach of primary school students engaged in forming conjectures, justifying and 
generalising. Lin, Yang, and Cheng (2004) raised the importance of proof and disproof 
construction to be built around what and how students justified their conjectures. Jeannotte 
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and Kieran (2017) underscored the importance of teachers’ awareness of students’ ways of 
communicating their reasoning.   

This [teachers’ awareness of students’ reasoning] requires a well-elaborated vision of MR 
[Mathematical Reasoning] where discourse is fundamental and that not only reflects the didactical 
discourse of the discipline but also serves as a conceptual tool for teachers (and researches) to analyze 
students’ discursive activity (p. 3).  

Teacher Noticing of Students’ Mathematical Reasoning 
 If a teacher is to effectively develop students’ capacity to reason mathematically, then 

they will theoretically need to have a clear conceptualisation of what mathematical reasoning 
is and have methods for highlighting reasoning in class (Bragg et al., 2016; Loong et al., 
2013). In order to assess the mathematical reasoning proficiency strand in the Australian 
curriculum, they then will also need to be able to identify the reasoning that students are 
using. The construct of teacher-noticing is concerned with analysing what teachers notice 
mid-lesson, as what is noticed affects the pedagogical decisions that teachers take (Jacobs et 
al., 2011; Jazby, 2016). Most accounts of teacher-noticing, such as Jacobs et al.’s (2011), 
employ information processing models, where noticing is a passive, internal mental process 
of analysing what is perceived and deciding to respond (Sherin & Star, 2011). In these 
models, a teacher views a noteworthy event, makes sense of it, then decides how to respond. 

Jazby’s (2016) ecological model of teacher-noticing analyses the way in which a teacher 
interacts with the classroom environment so that the environment is more likely to produce 
noteworthy events. Teachers are urged to orchestrate events in their classrooms – by 
selecting the tasks and materials in a lesson, for example – and the way in which they 
orchestrate events may increase the likelihood that a noteworthy event will occur. Using 
head-mounted cameras and post-lesson interviews to track what teachers attended to mid-
lesson, Jazby (2016) was able to identify mathematics teachers’ perceptual routines. He 
argued that teachers deployed their attention in particular, purposeful ways as they taught, 
and that the ways in which attention was deployed then affected which parts of the classroom 
were perceptually accessible or occluded from the teacher. Through this ecological lens, 
noticing students’ mathematical reasoning involves active behaviour on the teachers’ part; 
behaviours which create the conditions for noteworthy events to occur when the teachers’ 
attention is deployed towards them. 

From an ecological point of view, environmental constraints could limit a teacher’s 
capacity to notice students’ mathematical reasoning. The nature of attention is selective 
(Kirlik, 2007); a teacher cannot attend to all of the events that occur in a classroom 
simultaneously when there are multiple student groups spread across a classroom space. 
Hence, even a teacher who had exemplary mathematical and pedagogical knowledge would 
need to split their attention between student groups. This study seeks to identify some of the 
environmental constraints that may affect a teacher’s capacity to notice students’ 
mathematical reason as a lesson unfolds. 

This analysis is expected to provide insight into the different ways in which 
students in the same class engaged in the same task at a Year 5 and 6 level employed 
mathematical reasoning. In this paper, the following research questions will be addressed: 
RQ 1. What types of mathematical reasoning are evident when Year 5 and 6 students are 
given in a particular problem-solving task? 
RQ 2. To what extent is children’s mathematical reasoning perceptible to a teacher mid-
lesson? 
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Method 
The research team worked with teachers from a Melbourne suburban school to develop 

a lesson that would require students to engage in mathematical reasoning. The Painted Cube 
task (described below) was selected by the research team as a task that would be challenging 
for students while also having opportunities for students to engage in mathematical 
reasoning. One class of Year 5 students and their teachers travelled to the data collection 
facility where students were presented with the task for the first time. For the purposes of 
this study, three small groups of students (2 - 3 students) were selected for preliminary 
analysis: Max’s group worked through the problem quickly and were accurate; Carlo’s group 
took an average amount of time (compared to their classmates) and were mainly accurate, 
Richard’s group completed the task using all of the available time and were less accurate 
than other groups. As these three groups differed in terms of the time taken and level of 
accuracy, it was hoped that they would exhibit a range of mathematical reasoning that would 
represent the range of reasoning present in the wider class. By asking the children to work 
in groups, it was hoped that between-student discussion would be facilitated. In all of the 
groups analysed, an individual student took the lead during the task and each group is 
identified by this individual student. 

Data collection took place at the International Centre for Classroom Research’s (ICCR) 
data collection classroom at the University of Melbourne. The ICCR research classroom is 
a multi-camera data collection facility which can capture multiple channels of video and 
audio data as a lesson unfolds. Each student table had two small groups of students working 
at it and each table had a dedicated camera and two microphones recording what occurred 
during the lesson. Two additional cameras then tracked the teacher as she moved during the 
lesson, and the teacher wore a radio microphone to capture audio as she moved. Post-lesson, 
the teacher was interviewed in the ICCR studio about what she had noticed during the lesson. 

 
The Painted Cube Task  

 
The Painted Cube task is rich and complex, providing students with opportunities to 

explore a variety of patterns that can be described spatially, numerically and algebraically. 
The task was adapted from Driscoll (1999) to offer opportunities for primary school students 
to share and communicate their thinking and reasoning as they looked for patterns and 
formed generalisations.  Students are provided with a worksheet – shown in Figure 1 – to 
help them work systematically through the task so that they can test ideas and to ask 
themselves questions about further cases. This task relates to the Year 6 content description 
of the Australian Curriculum Mathematics under Number and Algebra strand ACM133 
elaboration “identifying and generalising number patterns” (www.acara.edu.au).  

The teacher introduced the task to the Year 6 students by first showing a 3 x 3 x 3 
unpainted Multi-Base Arithmetic (MAB) cube. Students were invited to brainstorm the 
features of a cube with each other such as the numbers of edges, corners or vertices, and 
sides of a cube. Students were asked to imagine that the cube was dipped in a paint can and 
then the “painted” cube was pulled out and separated into individual cubes, i.e., the 1 x 1 x 
1 cubes. The task requires students to determine how many mini cubes are painted on 3 sides, 
2 sides, 1 side and not painted at all, and record them in a table. Students were challenged to 
extend this to other sized cubes. The action of generalising was supported in this lesson when 
students were asked to express the relationships or patterns they observed in the table for 
columns A, B, C, D, and E shown in Figure 1. 
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Figure 1. A completed table from the painted cube task. 

Data Collection and Analysis 
 
In order to address the first research question of the study, data had to be analysed in a 

way that would identify students’ mathematical reasoning. It was hoped that students would 
discuss and justify their conjectures with their group members as they worked through the 
problem, as this is what had occurred when the same group of students had participated in a 
science-focused lesson at the same facility a week earlier. Hence, the first pass of the data 
analysis involved identifying instances when students had provided a justification or 
explanation of their thinking. Unfortunately, most groups did not make many utterances that 
justified their conjectures in this lesson. This meant that the research team had to employ 
abductive reasoning to infer the mathematical reasoning of students. 

Photographs of student worksheets collected at the end of the lesson were used to identify 
whether students had been accurate. The table that students had been given contained 25 
cells and this could be used as a unit of analysis if each cell was considered to be an instance 
of mathematical reasoning. When combined with video data, the order in which students had 
filled out the worksheet table could also be identified and timecoded (see Figure 1). This 
enabled analysis of how and when each group approached each step of the problem. Video 
data also showed the degree to which students used the physical cubes they were given as 
they worked through the problem, or whether they ignored the cubes and worked from a 
mental model. 

For each calculation that was performed during the lesson, student utterances and 
gestures were also used to infer student reasoning. Six calculation strategies could be 
identified in the data. A counting-based strategy could be inferred when students picked up 
a cube and began to tap the smaller cubes while saying, “1, 2, 3…” and so one, to arrive at 
a total. Partial counting/multiplicative strategies could be identified when students used a 
counting-based strategy to count some of the required cubes, then multiplication was used 
to find the final total – count the cubes on one face, then multiple by six, for example. 
Multiplicative without counting could be identified when a student made a statement such 
as, “a 4 x 4 x 4 cube … that 4 x 4 is 16 … 16 x 4 is 64” with no evidence of counting gestures. 
A layer model could be identified when working on column A of the table. Carlo, for 
example, was trying to ascertain how many cubes are needed to make a 4 x 4 x 4 cube and 
stated, “there’s 4 layers of 16” while making four slicing gestures over the cube. The use of 
geometric properties could be identified when students made statements about the properties 
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of cubes. Max, for example, stated, “well there’s going to be 6 faces so times 6…”. These 
utterances suggested that some students considered the number of faces, ‘corners’ and edges 
each larger cube had. A final category of calculation strategy – category unclear – was used 
to code instances where there was not enough data to make an inference about student 
reasoning. Six times Max wrote an answer in the table without making any utterances or 
gestures, hence there is not enough data in these instances to make inferences about how he 
had arrived at a solution. 

In order to answer the second research question of this study, student data needed to be 
contrasted with data relating to what was noticed by the teacher. In the post-lesson interview, 
the teacher was asked to identify which students she thought had displayed the best 
mathematical reasoning during lesson. The teacher’s movements, which were tracked by two 
cameras, were placed on an activity map of the classroom. Timecodes were noted when she 
shifted her position in the room. This provides data relating to what she could see at 
particular moments during the lesson as well as what was occluded from her view. Using an 
ecological lens, in order to notice students’ mathematical reasoning, the teacher would need 
to deploy her limited attentional resources in a way in which she can see or hear students 
recording, saying and doing things that showed their mathematical reasoning. Analysis of 
student data provides evidence of when and where the three groups analysed took actions 
that revealed their mathematical reasoning, and this can be cross-referenced with data 
relating to the teachers’ position and field of view to ascertain whether these events were 
noticeable to the teacher. This analysis does not provide evidence of what was attended to 
be the teacher, but merely tries to ascertain whether events that could reveal students’ 
mathematical reasoning were within her field of view or not. 

Results 
Student Reasoning in the Painted Cube Task 

 
While each group’s accuracy in the task varied, both Richard’s and Carlo’s groups 

showed similar mathematical reasoning in the task, while Max’s group relied more on 
multiplicative and geometric reasoning. Carlo’s group made the most utterances (seven in 
total) which explained their reasoning, while Richard’s and Max’s groups rarely made such 
utterances (two and one utterance respectively). Table 1 shows a summary in the differences 
in mathematical reasoning between each group. Both Richard’s and Carlo’s group had 
similar use of the counting only strategy (39% and 38% respectively), however Carlo’s 
group was more accurate using this strategy. Max’s group, in contrast did not use the 
counting only strategy. All groups used the counting and multiplying strategy, and this was 
often paired with either a layer model or geometric properties. Both Richard’s and Carlo’s 
groups mainly used this strategy with the layer model, where one layer would be counted 
before being multiplied by the number of layers. Again, Carlo’s group was more accurate 
than Richard’s when these strategies were used. Both Richard’s and Carlo’s groups used 
geometric properties to recognise the number of cubes painted on three sides was 
synonymous with the number of corners. In contrast, Max’s group used geometric properties 
the most (63% of the time) and was able to see that the number of faces and edges of a cube 
could also be used to help solve how many cubes were painted on one and two sides. 
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Table 1 
Students’ mathematical reasoning in the painted cube task 

 Richard (n=23) Carlo (n=24) Max (n=19) 

Strategy 
Rate of 
usage Accuracy 

Rate of 
usage Accuracy 

Rate of 
usage Accuracy 

Counting 39% 56% 38% 78% 0%  
Counting and 
multiplying 35% 75% 25% 83% 47% 100% 

Multiplying without 
counting 0%  0%  21% 100% 

Layer model 26% 67% 17% 100% 5% 100% 
Geometric property 27% 100% 21% 80% 63% 100% 

Strategy unclear 13% 66% 25% 100% 5% 100% 
Each group worked through the cells of the table shown in Figure 1 in a different order. 

Richard’s and Carlo’s groups tended to work from left to right across rows in the worksheet 
table. Max’s group worked down each column of the table. Max recognised and utilised 
geometric properties as he worked through the task as working down each column required 
him to look across cases. 
 
Teacher-Noticing of Student Reasoning Mid-lesson 

 
When asked in the post-lesson interview to identify the student group that had displayed 

the ‘best’ mathematical reasoning, the teacher nominated Carlo’s group. As students worked 
through the task, tracking of the teacher’s movements showed that she moved between 
groups and stopped to interact with each group either once or twice during  the between-
desk segment of the lesson. As she faced a particular group of students and interacted with 
them, she turned her back on other students so that they were occluded from her view. Over 
the 17-minute period of between-desk instruction, Richard’s group was within the teacher’s 
field of view twice for a total of approximately three minutes, Carlo’s group was within her 
field of view twice for a total of approximately 2 minutes 30 seconds, and Max’s group was 
within her field of view twice for approximately 1minute 20 seconds. Students tended to 
stop working on the problem when the teacher was near and responded to her questions about 
their work. Hence, none of the subtle gestures, utterances or use of physical objects that 
researchers used to ascertain students’ mathematical reasoning were visible to the teacher as 
she moved between desks. The teacher was able to hear three utterances related to explaining 
student reasoning – two from Carlo’s group and one from Max’s. Carlo’s utterances were 
more detailed than Max’s and he used a cube and gestures to explain to the teacher how the 
layer model worked in relation to working out the total number of cubes. 

Discussion 
Analysis of three groups of children working through the Painted Cube task reveals that 

each group used different types of mathematical reasoning. Max’s group was the most 
accurate, finished the task quickly, worked across cases, and relied on multiplicative 
strategies and geometric properties the most of the three groups analysed. Of the three 
groups, this group used the most mathematically sophisticated reasoning. The other two 
groups analysed (Richard’s and Carlo’s groups) used a similar rate of counting-based 
strategies although Carlo’s group was more accurate than Richard’s. Hence, analysis of these 
three groups shows a range of mathematical reasoning is present as this Year 5 and 6 class 
works through the problem. 
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While careful analysis of video data by a research team post-lesson revealed that Max’s 
group had more sophisticated mathematical reasoning, the teacher’s perspective post-lesson 
was that Carlo’s group demonstrated the best mathematical reasoning. An ecological 
analysis of what was within and occluded from the teacher’s view mid-lesson reveals that 
most of the subtle gestures and utterances that students made, which the research team could 
review on video and code, were not visible to the teacher mid-lesson. Thus, if the teacher 
had not noticed that Max’s group had the most sophisticated mathematical reasoning, it is 
because many of actions that make Max’s reasoning visible are subtle and occur when the 
teacher’s attention is directed towards other students. From an ecological point of view, this 
is not due to a deficit in teacher knowledge or skill; the classroom environment and task 
design have an impact on how visible students’ reasoning actions are to the teacher who has 
a limited amount of attention that must be distributed amongst multiple student groups in a 
dynamic environment. 

The teacher did seem to notice when groups made utterances explaining and justifying 
their thinking and her attention was directed to that group. Carlo’s group made the most of 
these kinds of utterances and this was also the group that the teacher claimed had the best 
mathematical reasoning. Loong et al. (2013) claimed that teachers need to have a clear idea 
of what constitutes mathematical reasoning if they are to teach and assess it and, in this 
study, the teacher seems to equate mathematical reasoning with providing justification. 

While it is not surprising that a research team who can review video data multiple times 
was able to identify differences in student reasoning that were not noticed by the teacher 
mid-lesson, the analysis provided in this report has important implications regarding how 
students’ mathematical reasoning may be made more visible to teachers. Teachers do not 
have the affordances that a research team has in terms of being able to view, pause and 
review one student group at a time to identify subtle indicators of mathematical reasoning. 
From an ecological point of view, teacher-noticing is constrained by the classroom 
environment (Jazby, 2016) but manipulation of that environment can make some structures 
within an environment easier to notice. If we take the design of the task, for example, the 
worksheet students were provided with became filled with answers to calculations (see 
Figure 1). If teachers are more likely to notice mathematical reasoning when students engage 
in constructing justifications for their answers, then the task could be modified so that 
students must construct and record justifications. The scenario for the task could involve a 
worker who has to paint little cubes that then are put together into larger cubes of various 
sizes. When orders come in, they have to get the right number of not painted, painted on one 
side, painted on two sides and painted on three sides cubes for each order. The worker will 
not accept advice on how many cubes are needed unless you can explain to them how you 
worked out your answer. This kind of modification to the task would theoretically create 
more justification actions amongst students and increase the recording of justification of 
strategies. Thus, students’ mathematical reasoning would theoretically become more 
noticeable via modification of the task rather than having to train the teacher how to notice.  

The results of this study demonstrate just how difficult it is for a teacher to notice 
students’ mathematical reasoning mid-lesson. Even the research team would not have been 
able to pick up the subtle student behaviours that were analysed from review of video data 
if they were also running the lesson in real time. Rather than focusing purely on developing 
teachers’ capacity to recognise students’ mathematical thinking (Jacobs et al., 2011), an 
ecological analysis suggests that mathematics education researchers could theoretically take 
a more human-centred approach to design. If the attentional limitations of people are kept in 
mind when designing mathematics tasks, the designer can make mathematical reasoning 
actions more likely to occur in ways that are easier to see for teachers that are having to 
monitor multiple student groups simultaneously. 
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